

Detailed feasibility assessment of timetables in the design phase

With micro simulation

David Koopman 06 October 2016

Outline

- 1. Introduction
- 2. The process of timetable planning
- 3. Benefits of Micro Simulation in timetable design
- 4. OpenTrack
- 5. Assessing operational feasibility of the Dutch timetable
- 6. Future forecast

Royal HaskoningDHV: Our Profile

Independent international engineering and project management consultancy

- Consultants, engineers, project managers, designers, environmental and technical professionals
- Expertise and experience of more than 6,000 colleagues in over 150 countries
- Top 50 engineering companies worldwide
- Turnover €667 million
- Leadership in sustainability and innovation
- Combining global expertise with local knowledge to deliver a multidisciplinary range of consultancy services for the entire living environment

Where we are in the world

Consultancy, Engineering & Project Management

Workforce of over 6,000 in more than 150 countries

> One of the **top independently owned** engineering companies

Introduction

Advisory group Rail, Utrecht

- Infrastructure planning and timetable planning
- Engineering of:
 - Track
 - Traction and catenary
 - Signalling
 - Constructions
 - Project management

Royal HaskoningDHV Enhancing Society Together

- Customers
 - ProRail (Dutch infrastructure manger)
 - NS (Dutch Railways)
 - Metro Amsterdam
 - Ministry of Infrastructure and Environment
 - Provinces
 - Contractors

OpenTrack: Railway traffic simulation

- Start mid 90's
- First commercial version
- Spin-off ETH-Zurich (2006)
- +380: Licences
- +260: Companies and institutions
- 49 countries

Main characteristics:

- Microscopic simulation
- Time Based
- Synchronous
- API (SOAP over HTTP)

OpenTrack Railway Technology Ltd., Gubelstrasse 28, CH - 8050 Zurich Switzerland, info@opentrack.ch.

OpenTrack

Old approach

- Local headway times and conflicts according to general rules, detailed calculation on request
- Running times not accurate
- Feedback in planning process is limited. Real proof of the pudding is in the operation

Current planning process with OpenTrack

ProRail/NS/RHDHV approach

- Take into account all constraints from trains, infrastructure and timetable
- Check on nationwide feasibility and stability in every planning step
- Stable and safe base for operation
- Less start-up problems when timetable is implemented

Micro-simulation

Realistic running times
Real headways
Showing effect of conflicts
Propagation of delays trough the network
Primary and Secondary conflicts

Full NL simulationOne model for 2016, 2017, 2018 and 2023

Dutch OpenTrack Model

NL Model: Facts and Numbers

To make you feel impressed!

Track Kilometres	9164 km
Switches	6846
Stations/Services	676
Main Signals	10576 (NS'54 / ETCS / a.o.)
Double Vertices	44093
Edges	46876
Routes	13372

Single Simulation: 06:00 - 13:00,

- step 2,0s, 2900 trains, 400 trains simultaneously
- 6 min with minimal output
- 23 min with timetable statistics and speed distance
- 49 min with 46 train diagrams and output on.

Demo

Assessing operational feasibility of NL

Running time:

- Modelling of running time variation
 - Extra slack according to planning rules (passenger trains)
 - 7,5% running time slack compared to the 10th percentile train
 - +1 minute additional release time as buffer

Results

Output

- Planning issues solved in process
- Train diagrams
- Delay lists
- Conflicts

ProRail/NS incorporated simulation in the timetable development:

- 1. Asses the quality of the planned timetable based on the output and expert judgement.
- 2. Use of the quality assessment for re-design actions
- 3. Improve the weak spots in the timetable

Results: Planning issues

When modelling we encounter and solve the issues

- Track usage
- Route usage
- Shapeshifting trains
- Use of non existing routes
- Infrastructure constraints

Results: 46 Train diagrams

Amsterdam Centraal - Den Haag Centraal

Results: Conflicts

Priotrity	Train 1	Train 2	Station/Junction	Type	Time	Delay train 1 [s]	Delay train 2 [s]	Headway norm [s]	Headway planned [s]	Headway measured simulation [s]
1	B1600-6	B11400-10	Amf	Stop at Signal	8:54:58	-86	-4	180	0	158
2	AC6000-5	BD3200-12	Ht	Braking for Signal	9:54:42	82	52	180	0	154
3	AC4700-5	B2100-10	Ledn	Braking for Route	8:43:34	144	16	180	0	138

Results: Geographical

Stop at signal

Results: Conflicts

Next Steps for improvement

- Implement OpenTrack in planning process
 - Direct feed back on planned timetable
 - Smaller area's affected in early stage
- More efficient (faster) checks
- Improve the quality of stochastic simulation
- When planning is stable in deterministic version:
 - Run a stochastic simulation with TRENO
 - Asses stability
- Graphical representation
- Data analysis
- Improve the planning rules

Contact details

David Koopman (MSc.) Railway capacity consultant

E: David.Koopman@RHDHV.com M: +31611315113

Leidseveer 4 PO Box 2202 3500GE Utrecht

